Logo Search packages:      
Sourcecode: qt4-x11 version File versions

qbitarray.cpp

/****************************************************************************
**
** Copyright (C) 1992-2007 Trolltech ASA. All rights reserved.
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** This file may be used under the terms of the GNU General Public
** License version 2.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of
** this file.  Please review the following information to ensure GNU
** General Public Licensing requirements will be met:
** http://www.trolltech.com/products/qt/opensource.html
**
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://www.trolltech.com/products/qt/licensing.html or contact the
** sales department at sales@trolltech.com.
**
** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
**
****************************************************************************/

#include "qbitarray.h"
#include <qdatastream.h>
#include <qdebug.h>
#include <string.h>

/*!
    \class QBitArray
    \brief The QBitArray class provides an array of bits.

    \ingroup tools
    \ingroup shared
    \reentrant

    A QBitArray is an array that gives access to individual bits and
    provides operators (\link operator&() AND\endlink, \link
    operator|() OR\endlink, \link operator^() XOR\endlink, and \link
    operator~() NOT\endlink) that work on entire arrays of bits. It
    uses \l{implicit sharing} (copy-on-write) to reduce memory usage
    and to avoid the needless copying of data.

    The following code constructs a QBitArray containing 200 bits
    initialized to false (0):

    \code
        QBitArray ba(200);
    \endcode

    To initialize the bits to true, either pass \c true as second
    argument to the constructor, or call fill() later on.

    QBitArray uses 0-based indexes, just like C++ arrays. To access
    the bit at a particular index position, you can use operator[]().
    On non-const bit arrays, operator[]() returns a reference to a
    bit that can be used on the left side of an assignment. For
    example:

    \code
        QBitArray ba;
        ba.resize(3);
        ba[0] = true;
        ba[1] = false;
        ba[2] = true;
    \endcode

    For technical reasons, it is more efficient to use testBit() and
    setBit() to access bits in the array than operator[](). For
    example:

    \code
        QBitArray ba(3);
        ba.setBit(0, true);
        ba.setBit(1, false);
        ba.setBit(2, true);
    \endcode

    QBitArray supports \c{&} (\link operator&() AND\endlink), \c{|}
    (\link operator|() OR\endlink), \c{^} (\link operator^()
    XOR\endlink), \c{~} (\link operator~() NOT\endlink), as well as
    \c{&=}, \c{|=}, and \c{^=}. These operators work in the same way
    as the built-in C++ bitwise operators of the same name. For
    example:

    \code
        QBitArray x(5);
        x.setBit(3, true);
        // x: [ 0, 0, 0, 1, 0 ]

        QBitArray y(5);
        y.setBit(4, true);
        // y: [ 0, 0, 0, 0, 1 ]

        x |= y;
        // x: [ 0, 0, 0, 1, 1 ]
    \endcode

    For historical reasons, QBitArray distinguishes between a null
    bit array and an empty bit array. A \e null bit array is a bit
    array that is initialized using QBitArray's default constructor.
    An \e empty bit array is any bit array with size 0. A null bit
    array is always empty, but an empty bit array isn't necessarily
    null:

    \code
        QBitArray().isNull();           // returns true
        QBitArray().isEmpty();          // returns true

        QBitArray(0).isNull();          // returns false
        QBitArray(0).isEmpty();         // returns true

        QBitArray(3).isNull();          // returns false
        QBitArray(3).isEmpty();         // returns false
    \endcode

    All functions except isNull() treat null bit arrays the same as
    empty bit arrays; for example, QBitArray() compares equal to
    QBitArray(0). We recommend that you always use isEmpty() and
    avoid isNull().

    \sa QByteArray, QVector
*/

/*! \fn QBitArray::QBitArray()

    Constructs an empty bit array.

    \sa isEmpty()
*/

/*!
    Constructs a bit array containing \a size bits. The bits are
    initialized with \a value, which defaults to false (0).
*/
00136 QBitArray::QBitArray(int size, bool value)
{
    if (!size) {
        d.resize(0);
        return;
    }
    d.resize(1 + (size+7)/8);
    uchar* c = reinterpret_cast<uchar*>(d.data());
    memset(c, value ? 0xff : 0, d.size());
    *c = d.size()*8 - size;
    if (value && size && size % 8)
        *(c+1+size/8) &= (1 << (size%8)) - 1;
}

/*! \fn int QBitArray::size() const

    Returns the number of bits stored in the bit array.

    \sa resize()
*/

/*! \fn int QBitArray::count() const

    Same as size().
*/

/*!
    If \a on is true, this function returns the number of
    1-bits stored in the bit array; otherwise the number
    of 0-bits is returned.
*/
00167 int QBitArray::count(bool on) const
{
    int numBits = 0;
    int len = size();
#if 0
    for (int i = 0; i < len; ++i)
        numBits += testBit(i);
#else
    // See http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
    const quint8 *bits = reinterpret_cast<const quint8 *>(d.data()) + 1;
    while (len >= 32) {
        quint32 v = quint32(bits[0]) | (quint32(bits[1]) << 8) | (quint32(bits[2]) << 16) | (quint32(bits[3]) << 24);
        quint32 c = ((v & 0xfff) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f;
        c += (((v & 0xfff000) >> 12) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f;
        c += ((v >> 24) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f;
        len -= 32;
        bits += 4;
        numBits += int(c);
    }
    while (len >= 24) {
        quint32 v = quint32(bits[0]) | (quint32(bits[1]) << 8) | (quint32(bits[2]) << 16);
        quint32 c =  ((v & 0xfff) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f;
        c += (((v & 0xfff000) >> 12) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f;    
        len -= 24;
        bits += 3;
        numBits += int(c);
    }
    while (len >= 0) {
        if (bits[len / 8] & (1 << ((len - 1) & 7)))
            ++numBits;
        --len;
    }
#endif
    return on ? numBits : size() - numBits;
}

/*!
    Resizes the bit array to \a size bits.

    If \a size is greater than the current size, the bit array is
    extended to make it \a size bits with the extra bits added to the
    end. The new bits are initialized to false (0).

    If \a size is less than the current size, bits are removed from
    the end.

    \sa size()
*/
00215 void QBitArray::resize(int size)
{
    if (!size) {
        d.resize(0);
    } else {
        int s = d.size();
        d.resize(1 + (size+7)/8);
        uchar* c = reinterpret_cast<uchar*>(d.data());
        if (size > (s << 3))
            memset(c + s, 0, d.size() - s);
        *c = d.size()*8 - size;
    }
}

/*! \fn bool QBitArray::isEmpty() const

    Returns true if this bit array has size 0; otherwise returns
    false.

    \sa size()
*/

/*! \fn bool QBitArray::isNull() const

    Returns true if this bit array is null; otherwise returns false.

    Example:
    \code
        QBitArray().isNull();           // returns true
        QBitArray(0).isNull();          // returns false
        QBitArray(3).isNull();          // returns false
    \endcode

    Qt makes a distinction between null bit arrays and empty bit
    arrays for historical reasons. For most applications, what
    matters is whether or not a bit array contains any data,
    and this can be determined using isEmpty().

    \sa isEmpty()
*/

/*! \fn bool QBitArray::fill(bool value, int size = -1)

    Sets every bit in the bit array to \a value, returning true if successful;
    otherwise returns false. If \a size is different from -1 (the default),
    the bit array is resized to \a size beforehand.

    Example:
    \code
        QBitArray ba(8);
        ba.fill(true);
        // ba: [ 1, 1, 1, 1, 1, 1, 1, 1 ]

        ba.fill(false, 2);
        // ba: [ 0, 0 ]
    \endcode

    \sa resize()
*/

/*!
    \overload

    Sets bits at index positions \a begin up to and excluding \a end
    to \a value.

    \a begin and \a end must be a valid index position in the bit
    array (i.e., 0 <= \a begin <= size() and 0 <= \a end <= size()).
*/

00285 void QBitArray::fill(bool value, int begin, int end)
{
    while (begin < end && begin & 0x7)
        setBit(begin++, value);
    int len = end - begin;
    if (len <= 0)
        return;
    int s = len & ~0x7;
    uchar *c = reinterpret_cast<uchar*>(d.data());
    memset(c + (begin >> 3) + 1, value ? 0xff : 0, s >> 3);
    begin += s;
    while (begin < end)
        setBit(begin++, value);
}

/*! \fn bool QBitArray::isDetached() const

    \internal
*/

/*! \fn void QBitArray::detach()

    \internal
*/

/*! \fn void QBitArray::clear()

    Clears the contents of the bit array and makes it empty.

    \sa resize(), isEmpty()
*/

/*! \fn void QBitArray::truncate(int pos)

    Truncates the bit array at index position \a pos.

    If \a pos is beyond the end of the array, nothing happens.

    \sa resize()
*/

/*! \fn bool QBitArray::toggleBit(int i)

    Inverts the value of the bit at index position \a i, returning the
    previous value of that bit as either true (if it was set) or false (if
    it was unset).

    If the previous value was 0, the new value will be 1. If the
    previous value was 1, the new value will be 0.

    \a i must be a valid index position in the bit array (i.e., 0 <=
    \a i < size()).

    \sa setBit(), clearBit()
*/

/*! \fn bool QBitArray::testBit(int i) const

    Returns true if the bit at index position \a i is 1; otherwise
    returns false.

    \a i must be a valid index position in the bit array (i.e., 0 <=
    \a i < size()).

    \sa setBit(), clearBit()
*/

/*! \fn bool QBitArray::setBit(int i)

    Sets the bit at index position \a i to 1.

    \a i must be a valid index position in the bit array (i.e., 0 <=
    \a i < size()).

    \sa clearBit(), toggleBit()
*/

/*! \fn void QBitArray::setBit(int i, bool value)

    \overload

    Sets the bit at index position \a i to \a value.
*/

/*! \fn void QBitArray::clearBit(int i)

    Sets the bit at index position \a i to 0.

    \a i must be a valid index position in the bit array (i.e., 0 <=
    \a i < size()).

    \sa setBit(), toggleBit()
*/

/*! \fn bool QBitArray::at(int i) const

    Returns the value of the bit at index position \a i.

    \a i must be a valid index position in the bit array (i.e., 0 <=
    \a i < size()).

    \sa operator[]()
*/

/*! \fn QBitRef QBitArray::operator[](int i)

    Returns the bit at index position \a i as a modifiable reference.

    \a i must be a valid index position in the bit array (i.e., 0 <=
    \a i < size()).

    Example:
    \code
        QBitArray a(3);
        a[0] = false;
        a[1] = true;
        a[2] = a[0] ^ a[1];
    \endcode

    The return value is of type QBitRef, a helper class for QBitArray.
    When you get an object of type QBitRef, you can assign to
    it, and the assignment will apply to the bit in the QBitArray
    from which you got the reference.

    The functions testBit(), setBit(), and clearBit() are slightly
    faster.

    \sa at(), testBit(), setBit(), clearBit()
*/

/*! \fn bool QBitArray::operator[](int i) const

    \overload
*/

/*! \fn bool QBitArray::operator[](uint i)

    \overload
*/

/*! \fn bool QBitArray::operator[](uint i) const

    \overload
*/

/*! \fn QBitArray::QBitArray(const QBitArray &other)

    Constructs a copy of \a other.

    This operation takes \l{constant time}, because QBitArray is
    \l{implicitly shared}. This makes returning a QBitArray from a
    function very fast. If a shared instance is modified, it will be
    copied (copy-on-write), and that takes \l{linear time}.

    \sa operator=()
*/

/*! \fn QBitArray &QBitArray::operator=(const QBitArray &other)

    Assigns \a other to this bit array and returns a reference to
    this bit array.
*/

/*! \fn bool QBitArray::operator==(const QBitArray &other) const

    Returns true if \a other is equal to this bit array; otherwise
    returns false.

    \sa operator!=()
*/

/*! \fn bool QBitArray::operator!=(const QBitArray &other) const

    Returns true if \a other is not equal to this bit array;
    otherwise returns false.

    \sa operator==()
*/

/*!
    Performs the AND operation between all bits in this bit array and
    \a other. Assigns the result to this bit array, and returns a
    reference to it.

    The result has the length of the longest of the two bit arrays,
    with any missing bits (if one array is shorter than the other)
    taken to be 0.

    Example:
    \code
        QBitArray a(3);
        QBitArray b(2);
        a[0] = 1; a[1] = 0; a[2] = 1;   // a: [ 1, 0, 1 ]
        b[0] = 1; b[1] = 0;             // b: [ 1, 1 ]
        a &= b;                         // a: [ 1, 0, 0 ]
    \endcode

    \sa operator&(), operator|=(), operator^=(), operator~()
*/

00485 QBitArray &QBitArray::operator&=(const QBitArray &other)
{
    resize(qMax(size(), other.size()));
    uchar *a1 = reinterpret_cast<uchar*>(d.data()) + 1;
    const uchar *a2 = reinterpret_cast<const uchar*>(other.d.constData()) + 1;
    int n = other.d.size() -1 ; 
    int p = d.size() - 1 - n;
    while (n-- > 0)
        *a1++ &= *a2++;
    while (p-- > 0)
        *a1++ = 0;
    return *this;
}

/*!
    Performs the OR operation between all bits in this bit array and
    \a other. Assigns the result to this bit array, and returns a
    reference to it.

    The result has the length of the longest of the two bit arrays,
    with any missing bits (if one array is shorter than the other)
    taken to be 0.

    Example:
    \code
        QBitArray a(3);
        QBitArray b(2);
        a[0] = 1; a[1] = 0; a[2] = 1;   // a: [ 1, 0, 1 ]
        b[0] = 1; b[1] = 0;             // b: [ 1, 1 ]
        a |= b;                         // a: [ 1, 1, 1 ]
    \endcode

    \sa operator|(), operator&=(), operator^=(), operator~()
*/

00520 QBitArray &QBitArray::operator|=(const QBitArray &other)
{
    resize(qMax(size(), other.size()));
    uchar *a1 = reinterpret_cast<uchar*>(d.data()) + 1;
    const uchar *a2 = reinterpret_cast<const uchar *>(other.d.constData()) + 1;
    int n = other.d.size() - 1;   
    while (n-- > 0)
        *a1++ |= *a2++;
    return *this;
}

/*!
    Performs the XOR operation between all bits in this bit array and
    \a other. Assigns the result to this bit array, and returns a
    reference to it.

    The result has the length of the longest of the two bit arrays,
    with any missing bits (if one array is shorter than the other)
    taken to be 0.

    Example:
    \code
        QBitArray a(3);
        QBitArray b(2);
        a[0] = 1; a[1] = 0; a[2] = 1;   // a: [ 1, 0, 1 ]
        b[0] = 1; b[1] = 0;             // b: [ 1, 1 ]
        a ^= b;                         // a: [ 0, 1, 1 ]
    \endcode

    \sa operator^(), operator&=(), operator|=(), operator~()
*/

00552 QBitArray &QBitArray::operator^=(const QBitArray &other)
{
    resize(qMax(size(), other.size()));
    uchar *a1 = reinterpret_cast<uchar*>(d.data()) + 1;
    const uchar *a2 = reinterpret_cast<const uchar *>(other.d.constData()) + 1;
    int n = other.d.size() - 1;
    while (n-- > 0)
        *a1++ ^= *a2++;
    return *this;
}

/*!
    Returns a bit array that contains the inverted bits of this bit
    array.

    Example:
    \code
        QBitArray a(3);
        QBitArray b;
        a[0] = 1; a[1] = 0; a[2] = 1;   // a: [ 1, 0, 1 ]
        b = ~a;                         // b: [ 0, 1, 0 ]
    \endcode

    \sa operator&(), operator|(), operator^()
*/

00578 QBitArray QBitArray::operator~() const
{
    int sz = size();
    QBitArray a(sz);
    const uchar *a1 = reinterpret_cast<const uchar *>(d.constData()) + 1;
    uchar *a2 = reinterpret_cast<uchar*>(a.d.data()) + 1;
    int n = d.size() - 1;
    while (n--)
        *a2++ = ~*a1++;
     if (sz && sz%8)
         *(a2-1) &= (1 << (sz%8)) - 1;
    return a;
}

/*!
    \relates QBitArray

    Returns a bit array that is the AND of the bit arrays \a a1 and \a
    a2.

    The result has the length of the longest of the two bit arrays,
    with any missing bits (if one array is shorter than the other)
    taken to be 0.

    Example:
    \code
        QBitArray a(3);
        QBitArray b(2);
        QBitArray c;
        a[0] = 1; a[1] = 0; a[2] = 1;   // a: [ 1, 0, 1 ]
        b[0] = 1; b[1] = 0;             // b: [ 1, 1 ]
        c = a & b;                      // c: [ 1, 0, 0 ]
    \endcode

    \sa QBitArray::operator&=(), operator|(), operator^()
*/

00615 QBitArray operator&(const QBitArray &a1, const QBitArray &a2)
{
    QBitArray tmp = a1;
    tmp &= a2;
    return tmp;
}

/*!
    \relates QBitArray

    Returns a bit array that is the OR of the bit arrays \a a1 and \a
    a2.

    The result has the length of the longest of the two bit arrays,
    with any missing bits (if one array is shorter than the other)
    taken to be 0.

    Example:
    \code
        QBitArray a(3);
        QBitArray b(2);
        QBitArray c;
        a[0] = 1; a[1] = 0; a[2] = 1;   // a: [ 1, 0, 1 ]
        b[0] = 1; b[1] = 0;             // b: [ 1, 1 ]
        c = a | b;                      // c: [ 1, 1, 1 ]
    \endcode

    \sa QBitArray::operator|=(), operator&(), operator^()
*/

00645 QBitArray operator|(const QBitArray &a1, const QBitArray &a2)
{
    QBitArray tmp = a1;
    tmp |= a2;
    return tmp;
}

/*!
    \relates QBitArray

    Returns a bit array that is the XOR of the bit arrays \a a1 and \a
    a2.

    The result has the length of the longest of the two bit arrays,
    with any missing bits (if one array is shorter than the other)
    taken to be 0.

    Example:
    \code
        QBitArray a(3);
        QBitArray b(2);
        QBitArray c;
        a[0] = 1; a[1] = 0; a[2] = 1;   // a: [ 1, 0, 1 ]
        b[0] = 1; b[1] = 0;             // b: [ 1, 1 ]
        c = a ^ b;                      // c: [ 0, 1, 1 ]
    \endcode

    \sa QBitArray::operator^=(), operator&(), operator|()
*/

00675 QBitArray operator^(const QBitArray &a1, const QBitArray &a2)
{
    QBitArray tmp = a1;
    tmp ^= a2;
    return tmp;
}

/*!
    \class QBitRef
    \reentrant
    \brief The QBitRef class is an internal class, used with QBitArray.

    \internal

    The QBitRef is required by the indexing [] operator on bit arrays.
    It is not for use in any other context.
*/

/*! \fn QBitRef::QBitRef (QBitArray& a, int i)

    Constructs a reference to element \a i in the QBitArray \a a.
    This is what QBitArray::operator[] constructs its return value
    with.
*/

/*! \fn QBitRef::operator bool() const

    Returns the value referenced by the QBitRef.
*/

/*! \fn bool QBitRef::operator!() const

    \internal
*/

/*! \fn QBitRef& QBitRef::operator= (const QBitRef& v)

    Sets the value referenced by the QBitRef to that referenced by
    QBitRef \a v.
*/

/*! \fn QBitRef& QBitRef::operator= (bool v)
    \overload

    Sets the value referenced by the QBitRef to \a v.
*/


/*****************************************************************************
  QBitArray stream functions
 *****************************************************************************/

/*!
    \relates QBitArray

    Writes bit array \a ba to stream \a out.

    \sa \link datastreamformat.html Format of the QDataStream operators \endlink
*/
#ifndef QT_NO_DATASTREAM
00735 QDataStream &operator<<(QDataStream &out, const QBitArray &ba)
{
    quint32 len = ba.size();
    out << len;
    if (len > 0)
        out.writeRawData(ba.d.constData() + 1, ba.d.size() - 1);
    return out;
}

/*!
    \relates QBitArray

    Reads a bit array into \a ba from stream \a in.

    \sa \link datastreamformat.html Format of the QDataStream operators \endlink
*/

00752 QDataStream &operator>>(QDataStream &in, QBitArray &ba)
{
    ba.clear();
    quint32 len;
    in >> len;
    if (len == 0) {
      ba.clear();
      return in;
    }

    const quint32 Step = 8 * 1024 * 1024;
    quint32 totalBytes = (len + 7) / 8;
    quint32 allocated = 0;

    while (allocated < totalBytes) {
        int blockSize = qMin(Step, totalBytes - allocated);
        ba.d.resize(allocated + blockSize + 1);
        if (in.readRawData(ba.d.data() + 1 + allocated, blockSize) != blockSize) {
            ba.clear();
            in.setStatus(QDataStream::ReadPastEnd);
            return in;
        }
        allocated += blockSize;
    }

    int paddingMask = ~((0x1 << (len & 0x7)) - 1);
    if (paddingMask != ~0x0 && (ba.d.constData()[ba.d.size() - 1] & paddingMask)) {
        ba.clear();
        in.setStatus(QDataStream::ReadCorruptData);
        return in;
    }

    *ba.d.data() = ba.d.size() * 8 - len;
    return in;
}
#endif

Generated by  Doxygen 1.6.0   Back to index